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What is a Paraproduct?!

A Paraproduct is a bilinear operator that is similar to, but“nicer” than, a product
of two functions. Consider the following operator:

Π(f , g)(s) :=

∫ s

−∞
f ′(t)g(t) dt, ∀ f , g ∈ C 1

0 (R).

Then Π satisfies:

Product Reconstruction: By Leibniz’s rule,

fg = Π(f , g) + Π(g , f ).

Linearization Formula: For G ∈ C∞(R), we have

G (f ) = G (0) + Π(f ,G ′(f )).

A Leibniz-type Rule: It follows immediately that

Π(f , g)′ = f ′g .

Then Π is almost a paraproduct. (generally, paraproducts also satisfy a Hölder’s
inequality.)

Kelly Bickel Washington University St. Louis, Missouri 63130 Paraproducts in One and Several Variables M. Lacey and J. Metcalfe



A Paraproduct is . . .

A Paraproduct Π is a bilinear operator satisfying: product reconstruction, a
linearization formula, a Hölder-type inequality, and a Leibniz-type rule:

∂αΠ(f , g) = Π′(∂αf , g).

We study One-Parameter Model Paraproducts:

Let I be an interval. Then φI is a bump function adapted to I iff ‖φI‖2 = 1 and

|DnφI (x)| . |I |−n−1/2

(
1 +
|x − c(I )|
|I |

)−N
, n = 0, 1,

where c(I ) is the center of I and N is sufficiently large. Let D be the set of dyadic
intervals. Define:

B(f1, f2) :=
∑
I∈D

|I |−1/2φ3,I

2∏
j=1

〈fj , φj,I 〉,

where, for each I , each φj,I is adapted to I and two of the φj,I have integral zero.
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An Example

For each dyadic interval I , the Haar function adapted to I is

hI := |I |−1/2(1Il − 1Ir ),

where Il is the left half of I , and Ir is the right half of I . Moreover, define

h0
I := hI and h1

I := |hI |.

Then, the Haar Paraproducts are given by:

Bk1,k2,k3 (f1, f2) =
∑
I∈D

|I |−1/2〈f1, hk1

I 〉 〈f2, h
k2

I 〉 h
k3

I ,

where kj ∈ {0, 1} and two of the kj are zero. It can be shown that

f1f2 = B1,0,0(f1, f2) + B0,1,0(f1, f2) + B0,0,1(f1, f2).
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Increase the Parameters!

We also study Bi-parameter Model Paraproducts:

Let R be the set of dyadic rectangles in R2. A function φR is adapted to the
rectangle R, where R = R1 × R2, if

φR(x) = φR1 (x1)φR2 (x2),

where each φRk
is adapted to Rk . The bi-parameter model paraproducts are of the

form:

B(f1, f2) =
∑
R∈R

|R|−1/2φ3,R

2∏
j=1

〈fj , φj,R〉,

where each φj,R is adapted to R and for each coordinate xk , k = 1, 2, there are
two positions in j = 1, 2, 3 such that∫

R
φj,R(x1, x2)dxk = 0 ∀ xi 6= xk and ∀ R ∈ R.

Then we say B has xk zeros in the j th position (or {φj,R} has xk zeros).
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Main Results

The main results proved in the paper are that both the one and bi-parameter
model paraproducts satisfy a Hölder-type inequality:

Theorem 1 (Coifman, Meyer ’78), (Muscalu, Pipher, Tao, Thiele ’04)

Whenever 1 < p1, p2 ≤ ∞, 1/r = 1/p1 + 1/p2, and 0 < r <∞,

‖B(f1, f2)‖r . ‖f1‖p1‖f2‖p2 .

Kelly Bickel Washington University St. Louis, Missouri 63130 Paraproducts in One and Several Variables M. Lacey and J. Metcalfe



Classical Coifman-Meyer Theorem

Theorem 1 is a discrete version of the following one and bi-parameter results:

Let m be a bounded function on R2, smooth away from the origin and satisfying

|∂αm(ζ)| . 1

|ζ||α|
,

for sufficiently many multi-indices α and define the bilinear operator T
(1)
m by

T (1)
m (f , g) =

∫
R2

m(ζ)f̂ (ζ1)ĝ(ζ2)e2πix(ζ1+ζ2)dζ,

for Schwartz functions f , g ∈ S(R). We can generalize this by allowing m to be
defined on R2n and f , g ∈ S(Rn).

Theorem 2 (Coifman, Meyer, ’78)

If m is a symbol satisfying the above estimates, then the bilinear operator T
(1)
m

maps Lp × Lq → Lr whenever 1 < p, q ≤ ∞, 1/r = 1/p + 1/q, and 0 < r <∞.
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Bi-parameter Coifman-Meyer Theorem

Let m(ζ, η) be a bounded function on R4, smooth away from {(ζ1, η1) = 0}
∪{(ζ2, η2) = 0} and satisfying the estimate

|∂αζ ∂βηm(ζ, η)| . 1

|(ζ1, η1)|α1+β1

1

|(ζ2, η2)|α2+β2
,

for sufficiently many multi-indices α and β. Then we can define the bilinear

operator T
(2)
m as follows:

T (2)
m (f , g) =

∫
R4

m(ζ, η)f̂ (ζ)ĝ(η)e2πix(ζ+η)dζdη,

where f , g ∈ S(R2).

Theorem 3 (Muscalu, Pipher, Tao, Thiele ’04)

If m is a symbol satisfying the above estimates, then the bilinear operator T
(2)
m

maps Lp × Lq → Lr whenever 1 < p, q ≤ ∞, 1/r = 1/p + 1/q, and 0 < r <∞.
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Fractional Derivative Estimates

Let f , g ∈ S(R2) and for α > 0, define the fractional derivative Dα by

D̂αf (ζ) = |ζ|α f̂ (ζ).

There are paraproducts Πj for j = 0, 1, 2, 3 such that the Coifman-Meyer theorem
applies to each Πj and

fg =
3∑

j=0

Πj(f , g).

Using the structure of the Πj , one can find paraproducts Π′1 and Π′2 with

Dα
(
Π1(f , g)

)
= Π′1(f ,Dαg) and Dα

(
Π2(f , g)

)
= Π′2(Dαf , g),

and similar Π′0 and Π′3 paraproducts. Using the Coifman-Meyer theorem, calculate

||Dα(fg)‖r .
3∑

j=0

‖Dα(Πj(f , g))‖r

. ‖Dαf ‖p‖g‖q + ‖f ‖p‖Dαg‖q,

for 1 < p, q ≤ ∞, 1/r = 1/p + 1/q, and 0 < r <∞.
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Fractional Partial Derivative Estimates

For f ∈ S(R2) and for α, β > 0, define the partial differential operator Dα1D
β
2 by

D̂α1D
β
2 f (ζ) = |ζ1|α|ζ2|β f̂ (ζ).

Then, for f , g ∈ S(R2), using the bi-parameter Coifman-Meyer theorem and
analogous manipulations of paraproducts, we have

‖Dα1D
β
2 (fg)‖r . ‖Dα1D

β
2 f ‖p‖g‖q + ‖f ‖p‖Dα1D

β
2 g‖q

+‖Dα1 f ‖p‖D
β
2 g‖q + ‖Dβ2 f ‖p‖D

α
1 g‖q,

for 1 < p, q ≤ ∞, 1/r = 1/p + 1/q, and 0 < r <∞.
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Square and Maximal Functions

We are considering the following paraproducts:

B(f1, f2) :=
∑
I∈D

|I |−1/2φ3,I

2∏
j=1

〈fj , φj,I 〉,

where, for each I , each φj,I is adapted to I and two of the φj,I have integral zero.
Without loss of generality,we can assume φ2,I and φ3,I always have integral zero.

We will need the following variations of the maximal function and square function:

M1g := sup
I∈D

1I
|〈g , φ1,I 〉|√
|I |

Sjg :=

[∑
I∈D

|〈g , φj,I 〉|2

|I |
1I

]1/2

, for j = 2, 3.
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Maximal Function Bounds

M1(f )(x) = sup
I∈D

1I
|〈f , φ1,I 〉|√
|I |

. Mf (x),

where M denotes the typical Hardy-Littlewood maximal function. Fix I ∈ D , say
|I | = 2K+1. Translate I so that it is centered at 0 and let y be in I . Then:

|〈f , φI 〉|√
|I |

. |I |−1

∫
R
|f (x)| (1 + |x |/|I |)−2 dx

. |I |−1

∫
I

|f |+ |I |−1

∫
R−I
|f (x)|(1 + |x |2/|I |2)−1dx

. Mf (y) +
∑
j>k

2−K−1

∫
Ij

|f (x)|dx(1 + 22(j−1)/22(K+1))−1

. Mf (y) +
∑
j>k

2k−j 1

2j+1

∫
Ij

|f (x)|dx

. Mf (y),

where Ij is the interval centered around zero with length 2j+1. As y ∈ I , it is clear
that y ∈ Ij .
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Square Function Bounds

Sf is more or less large only where f is large, which is reflected by

‖Sf ‖p . ‖f ‖p ∀ 1 < p <∞.

Partially follows because 〈φI , φI ′〉 is usually small. In particular, if all {φI} have
integral zero, then ∑

I∈D

|〈φI , φI ′〉| ≤ C .

For p = 2, restrict to finite sums, let ‖f ‖2 = 1 and calculate:∑
I

|〈f , φI 〉|2 ≤ ‖
∑
I

〈f , φI 〉φI‖2,

using Cauchy-Schwarz and then calculate(∑
I

|〈f , φI 〉|2
)2

≤
∑
I

∑
I ′

〈f , φI 〉〈φI ′ , f 〉〈φI ′ , φI 〉

≤ 2
∑
I

|〈f , φI 〉|2
∑
I ′

|〈φI ′ , φI 〉|.
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Proof of One-Parameter Result

Recall: We are trying to show that B maps Lp1 × Lp2 → Lr whenever
1 < p1, p2 ≤ ∞, 1/r = 1/p1 + 1/p2, and 0 < r <∞.

Case 1: 1 < r <∞
In this case, L.M. use a duality argument. We will need the following obvious fact:
If {aj,I}I∈D are sequences such that {a1,I} ∈ l∞, {a2,I}, {a3,I} ∈ l2, then∑

I∈D

a1,Ia2,Ia3,I ≤ ‖a1,I‖∞‖a2,I‖2‖a3,I‖2,

and in particular,

∑
I∈D

3∏
j=1

(
|〈fj , φj,I 〉|√
|I |

1I (x)

)

≤ sup
I∈D

|〈f1, φ1,I 〉|√
|I |

1I (x)
3∏

j=2

[∑
I∈D

|〈fj , φj,I 〉|2

|I |
1I (x)

]1/2

= (M1f1)(S2f2)(S3f3)(x)
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Proof of One-Parameter Result

Case 1: 1 < r <∞
Let r ′ be dual to r , fix f3 ∈ Lr

′
with ‖f3‖r ′ = 1, and calculate:

〈B(f1, f2), f3〉 =

∫ ∑
I∈D

|I |−1/2φ3,I

2∏
j=1

〈fj , φj,I 〉f̄3

≤
∫ ∑

I∈D

|I |−3/2
3∏

j=1

|〈fj , φj,I 〉|1I

.
∫

(Mf1)(S2f2)(S3f3)

≤ ‖Mf1‖p1‖S2f2‖p2‖S3f3‖r ′

. ‖f1‖p1‖f2‖p2 ,

where Hölder’s inequality is used. Taking the supremum over all such f3 yields:

‖B(f1, f2)‖r . ‖f1‖p1‖f2‖p2 .
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Proof of One-Parameter Result

Case 2: 1/2 < r < 1

M.L. prove the following weak-type estimates:

λ|{B(f1, f2) > λ}|1/r . ‖f1‖p1‖f2‖p2 , (1)

and multi-linear Marcinkiewicz interpolation yields the desired strong estimates.
To get the weak estimates, use the following lemma:

Lemma 1 (Auscher, Hofmann, Muscalu, Tao, Thiele ’02)

Let 0 < r <∞. If for all sets E with 0 < |E | <∞, there is subset E ′ ⊆ E with
|E ′| ∼ |E | and |〈f , 1E ′〉| . A|E |1/r ′ then

‖f ‖r ,∞ . A.

In particular, let f = B(f1, f2) and A = ‖f1‖p1‖f2‖p2 .
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The Λ operator

Consider the following multi-linear operator:

Λ(f1, f2, f3) :=
∑
I∈D

|I |−1/2
3∏

j=1

|〈fj , φj,I 〉|. (2)

Then, M.L. shows that for each f1, f2, and set E , there is a set E ′ ⊆ E with
|E ′| ∼ |E | such that

Λ(f1, f2, f3) . |E |1/r
′
‖f1‖p1‖f2‖p2 ,

for all f3 supported in E ′ and bounded by 1. (particularly, f3 = 1E ′ .)

By multi-linearity, we can assume ‖f1‖p1 = ‖f2‖p2 = 1. As the class of the
multi-linear forms Λ is invariant under dilations by powers of two, we can assume
|E | = 1.

Specifically, if Dλ is the dilation operator defined by (Dλf )(x) = f (λ−1x) and

Λk(f1, f2, f3) := 2−kΛ(D2k f1,D2k f2,D2k f3),

then Λk is a multi-linear form of type (2) for k ∈ Z.
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End!

The End!
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Bi-parameter Paraproducts- Review

Recall: for I be an interval, we say φI is a bump function adapted to I iff
‖φI‖2 = 1 and

|DnφI (x)| . |I |−n−1/2

(
1 +
|x − c(I )|
|I |

)−N
, n = 0, 1,

where c(I ) is the center of I and N is sufficiently large. Last time, we considered
paraproducts of the form:

B(f1, f2) :=
∑
I∈D

|I |−1/2φ3,I

2∏
j=1

〈fj , φj,I 〉,

where, for each I , each φj,I is adapted to I and two of the φj,I have integral zero.

Let R be the set of dyadic rectangles in R2. A function φR is adapted to the
rectangle R, where R = R1 × R2, if

φR(x) = φR1 (x1)φR2 (x2),

where each φRk
is adapted to Rk .
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Bi-parameter Paraproducts- Review

The bi-parameter model paraproducts are of the form:

B(f1, f2) =
∑
R∈R

|R|−1/2φ3,R

2∏
j=1

〈fj , φj,R〉,

where each φj,R is adapted to R and for each coordinate xk , k = 1, 2, there are
two positions in j = 1, 2, 3 such that∫

R
φj,R(x1, x2)dxk = 0 ∀ xi 6= xk and ∀ R ∈ R.

Then we say B has xk zeros in the j th position (or {φj,R} has xk zeros).

Theorem 2 (Muscalu, Pipher, Tao, Thiele ’04)

Whenever 1 < p1, p2 ≤ ∞, 1/r = 1/p1 + 1/p2, and 0 < r <∞,

‖B(f1, f2)‖r . ‖f1‖p1‖f2‖p2 .
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Variants of Square and Maximal functions

Again, M.L. use variants of square and maximal functions, adapted to the specific
bump functions appearing in the given paraproduct B.

Consider the following iterates of one-variable square and maximal functions:

MM(f ) := sup
R∈R

|〈f , φR〉|√
|R|

1R

S1M2(f ) :=

[∑
R1∈D

sup
R2∈D

|〈f , φR1×R2〉|2

|R|
1R

]1/2

, R = R1 × R2

SS(f ) :=

[∑
R∈R

|〈f , φR〉|2

|R|
1R

]1/2

,

where we can similarly define S2M1, M1S2, and M2S1.

If a square function is applied to the set {φR} in the xk coordinate, we require the
functions {φR} to have xk zeros.

Kelly Bickel Washington University St. Louis, Missouri 63130 Paraproducts in One and Several Variables (Part II) M. Lacey and J. Metcalfe



Biparameter Proof: Case 1

As before, the interated square and maximal functions are bounded from Lp → Lp,
for 1 < p <∞. Specficically, if T is an operator on the previous slide,

‖Tf ‖p . ‖f ‖p

for 1 < p <∞. As before, we define the multilinear form Λ by

Λ(f1, f2, f3) =
∑
R∈R

|R|−1/2
3∏

j=1

|〈fj , φj,R〉|

for f3 ∈ Lr
′
, and have:

〈B(f1, f2), f3〉 ≤ Λ(f1, f2, f3)

=

∫ ∑
R∈R

3∏
j=1

|R|−1/2|〈fj , φj,R〉|1R ,

We will use operators to bound the sum inside the integral. The operators we
choose will depend on where B has zeros in each coordinate.

Kelly Bickel Washington University St. Louis, Missouri 63130 Paraproducts in One and Several Variables (Part II) M. Lacey and J. Metcalfe



Bi-parameter Proof Case 1

To illustrate, assume B has x2 zeros in the j = 1, 2 positions and x1 zeros in the
j = 2, 3 positions. Then we have:

∑
R∈R

3∏
j=1

|R|−1/2|〈fj , φj,R〉|1R

≤
∑
R1∈D

sup
R2∈D

|〈f3, φ3,R〉|√
|R|

1R

2∏
j=1

(∑
R2∈D

|〈fj , φj,R〉|2

|R|
1R

)1/2

≤ sup
R1

(∑
R2

|〈f1, φ1,R〉|2

|R|
1R

) 1
2
(∑

R

|〈f2, φ2,R〉|2

|R|
1R

) 1
2
(∑

R1

sup
R2

|〈f3, φ3,R〉|2

|R|
1R

) 1
2

= (M1S2f1)(SSf2)(S1M2f3)

≤ (S2M1f1)(SSf2)(S1M2f3).
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Bi-parameter Proof Case 1

In general, there are 3 iterated square/maximal operators Tj for j = 1, 2, 3 with

〈B(f1, f2), f3〉 ≤ Λ(f1, f2, f3)

=

∫ ∑
R∈R

3∏
j=1

|R|−1/2|〈fj , φj,R〉|1R

≤
∫

T1f1 T2f2 T3f3.

Case 1: For 1 < r <∞, let r ′ be dual to r and choose f3 ∈ Lr
′

with ‖f3‖r ′ = 1.
Then

〈B(f1, f2), f3〉 ≤ ‖T1f1‖p1‖T2f2‖p2‖T3f3‖r ′
. ‖f1‖p1‖f2‖p2 ,

which gives the result for 1 < r <∞.
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Bi-parameter Proof Case 2

Case 2: 1/2 < r < 1

M.L. prove the following weak-type estimates:

λ|{B(f1, f2) > λ}|1/r . ‖f1‖p1‖f2‖p2 ,

and multi-linear Marcinkiewicz interpolation yields the desired strong estimates.

To get the weak estimates, show, that for each f1, f2 with ‖f1‖p1 = ‖f2‖p2 = 1 and
set E with |E | = 1, there is a set E ′ with E ′ ⊆ E with |E ′| ∼ |E | and

Λ(f1, f2, f3) . 1,

for every f3 supported in E ′ and bounded by 1.

Further, we can assume each fj is smooth and compactly supported. Let Tj , for
j = 1, 2, 3, be the operators bounding B as in the previous slide.
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O Notation

We will be estimating

Λ(f1, f2, f3) =
∑
R∈R

|R|−1/2
3∏

j=1

|〈fj , φj,R〉|.

In particular, we will decompose R into several classes of rectangles. Let O be a
class of dyadic rectangles. Then define

sum(O) =
∑
R∈O

|R|−1/2
3∏

j=1

|〈fj , φj,R〉|.

Recall that for each iterated operator Tj we were summing (or sup-ing) over
〈f , φR〉, for R ∈ R. Let TO denote an iterated square or maximal function
restricted to the class of dyadic rectangles O. For example, if T = SS ,

TO f =

(∑
R∈O

|〈f , φR〉|2

|R|
1R

)1/2

.

Before we define E ′, we need to establish several bounds on sum(O) and ‖TO‖2

for classes of rectangles O satisfying special properties.
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Technical Lemma 1

Lemma 2

Let O ⊆ R and let µ > 1 be a constant such that supp(f ) ∩ µR = ∅ ∀ R ∈ O, for
a given function f . Then

‖TO f ‖2 . µ−N
′
‖f ‖2,

where N ′ = N − N0, where N is the integer in the definition of adapted for the
{φR} defining T , and N0 is the smallest integer needed to get the Lp bounds on
the square and maximal functions.

Idea of Proof Let {φR} be adapted with integer N > 0. One can define a new
set of adapted functions {φ̃R} adapted with integer N0 such that

φ̃R(x) = µN′
φR(x) ∀ x 6∈ µR.

Define T with the {φR} and T̃ with the {φ̃R}. If f satisfies the assumptions of
the lemma, then

TO f = µ−N
′
T̃O f ,

and the result follows since T̃ is bounded on L2, with bounds independent of µ.
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Technical Lemma 2

Lemma 3

Let c1, c2, c3 > 0 be constants and O a collection of rectangles such that

|R ∩ {Tj fj > cj}| ≤ 1
100 |R| for R ∈ O, j = 1, 2, 3. (3)

Then we have the estimate: sum(O) . c1c2c3|shO|.

If (3) is not known for j = 3, we have: sum(O) . c1c2|shO|1/2‖T3O f3‖2.

Idea of Proof:
Let W = sh(O) ∩

⋂3
j=1{Tj fj < cj}, so that |R ∩W | ≥ 97

100 |R|. Then:

sum(O) .
∫
W

∑
R∈O

3∏
j=1

|R|−1/2|〈fj , φj,R〉|1R

≤
∫
W

T1f1 T2f2 T3f3

≤ |sh(O)|c1c2c3.
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Definition of E ′

Fix f1, f2, E with ‖f1‖p1 = ‖f2‖p2 = |E | = 1. Define 4ν = min(p1, p2) and let T0

be the strong maximal function (in two parameters). Define

Ωj,l := {Tj fj > C2l}, l ∈ Z, j = 1, 2,

Ωl := ∪2
j=1Ωj,l ,

Ω := ∪l∈N{T01Ωl
> 2−νl/100},

Ω̃ := {T01Ω > 1/2}.

Set E ′ = Ω̃c ∩ E . We can choose C so that |E ′| ≥ 1/2 by choosing C so that
|Ω| < 1/8. Using the L2 boundedness ofT0 and Lpj boundedness of the Tj for
j = 1, 2, we have

|Ω| ≤ K1

∑
l∈N
|Ωl |22νl ≤ K2

∑
l∈N

2∑
j=1

C−pj 2l(2ν−pj ),

which converges, and so we can choose C >> 0 to give Ω̃ the desired size.
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Decomposition of R

Recall, we are trying to show:

Λ(f1, f2, f3) =
∑
R∈R

|R|−1/2
3∏

j=1

|〈fj , φj,R〉| . 1,

where f3 is bounded by one and supported on E ′. Then, for 1 < p3 <∞,
‖f3‖p3 ≤ 1.

We consider the sum restricted to specific classes of rectangles in R and split the
rectangles into classes as follows:

R is in class Oj,l iff l is the greatest integer so that

|R ∩ Ωj,l | = |R ∩ {Tj fj > C2l}| ≥ 1

100
|R|.

As the Tj fj are bounded, every rectangle R is in precisely one Oj,l for each j and

so we can associate to each R a tuple ~l = (l1, l2, l3) of integers.
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~l with l1, l2 ≤ 0

Let L denote the tuples with l1, l2, l3 ≤ 0. Fix such an ~l = (l1, l2, l3) and define

Ol = ∩3
j=1Oj,lj .

Then for each R ∈ Ol , and j = 1, 2, 3,

|R ∩ Ωj,lj+1| = |R ∩ {Tj fj > C2lj+1}| < 1

100
|R|.

and so Technical Lemma 2 yields:

sum(Ol) . |sh(Ol)|2l1+l2+l3 .

The Lpj -boundedness of Tj implies that, for θ1 + θ2 + θ3 = 1,

|sh(Ol)| ≤ |sh(O1,l1 )|θ1 |sh(O2,l2 )|θ2 |sh(O3,l3 )|θ3

. 2−p1l1θ1−p2l2θ2−p3l3θ3 .

Then we can calculate∑
l∈L

sum(Ol) .
∑
l∈L

2l1(1−p1θ1)+l2(1−p2θ2)+l3(1−p3θ3),

which converges for θ1, θ2, θ3 and p3 > 0 with 1− pjθj > 0.
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~l with l1 > 0 or l2 > 0

Let G denote the tuples with at least one of l1, l2 ≥ 0. Fix such an ~l = (l1, l2, l3)
and define

Ol = ∩2
j=1Oj,lj .

Fix such an l and without loss of generality, assume l1 > 0. Let R ∈ Ol . Let
2νl1/2R be the rectangle obtained by dilating each side of R by a factor of 2νl1/2

and keeping the same center. Then

1

|2νl1/2R|

∫
2νl1/2R

1Ωl1
= |2νl1/2R ∩ Ωl1 |/|2νl1/2R|

≥ |R ∩ Ωl1 |/2νl1 |R|
≥ 2−νl1/100,

which implies 2µl1/2R ⊆ Ω and so

2νl1/2R ∩ supp(f3) = ∅ ∀ R ∈ Ol .

Technical Lemma 1 gives:

‖TOl ,3f3‖2 . 2−N
′νl1/2‖f3‖2 ≤ 2−10l1 ,

for N ′ sufficiently large.
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~l with l1 > 0 or l2 > 0

Actually, we showed:

‖TOl ,3f3‖2 . min(2−10l1 , 2−10l2 ).

Now, as each R ∈ Ol satisfies:

|R ∩ {Tj fj > C2lj+1}| ≤ 1
100 |R| for R ∈ Ol , j = 1, 2,

Technical Lemma 2 implies:

sum(Ol) . 2l1+l2 |shOl |1/2‖TOl ,3f3‖2

. 2l1+l2 min(2−10l1 , 2−10l2 ),

which is clearly summable over all tuples (l1, l2) with l1 or l2 positive. This covers
the entire class of dyadic rectangles. Thus, we have proved:

Λ(f1, f2, f3) =
∑
R∈R

|R|−1/2
3∏

j=1

|〈fj , φj,R〉| . 1,

as desired.
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